Estrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain.
نویسندگان
چکیده
Inhibitors of the mammalian target of rapamycin (mTOR) are currently in clinical trials for the treatment of breast cancer. The mechanisms through which mTOR are activated in breast cancer and the relationship of mTOR activation to steroid hormones, such as estrogen, that are known to influence breast cancer pathogenesis, are not yet understood. Using MCF-7 cells as a model, we found that 17-beta estradiol (E(2)) rapidly increased the phosphorylation of downstream targets of mTOR: p70 ribosomal protein S6 kinase, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 1. The phosphoinositide-3-kinase inhibitor, wortmannin, and the mTOR inhibitor, rapamycin, blocked E(2)-induced activation of p70 ribosomal protein S6 kinase. We hypothesized that tuberin and the small GTPase Ras homologue enriched in brain (Rheb), regulators of the mTOR pathway, mediate E(2)-induced activation of mTOR. Consistent with this hypothesis, E(2) rapidly (within 5 minutes) stimulated tuberin phosphorylation at T1462, a site at which Akt phosphorylates and inactivates tuberin. E(2) also rapidly decreased the inactive, GDP-bound form of Rheb. Finally, we found that small interfering RNA down-regulation of endogenous Rheb blocked the E(2)-stimulated proliferation of MCF-7 cells, demonstrating that Rheb is a key determinant of E(2)-dependent cell growth. Taken together, these data reveal that the TSC/Rheb/mTOR pathway plays a critical role in the regulation of E(2)-induced proliferation, and highlight Rheb as a novel molecular target for breast cancer therapy.
منابع مشابه
Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb
BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملRas and Rheb Signaling in Survival and Cell Death
One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival ...
متن کاملThe TSC1-TSC2 complex: a molecular switchboard controlling cell growth.
TSC1 and TSC2 are the tumour-suppressor genes mutated in the tumour syndrome TSC (tuberous sclerosis complex). Their gene products form a complex that has become the focus of many signal transduction researchers. The TSC1-TSC2 (hamartin-tuberin) complex, through its GAP (GTPase-activating protein) activity towards the small G-protein Rheb (Ras homologue enriched in brain), is a critical negativ...
متن کاملActivity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophospho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 19 شماره
صفحات -
تاریخ انتشار 2006